
TREK-USER-038

TREK

HOW TO PROVIDE ADDITIONAL

COMMAND VALIDATION WHEN USING

COMMAND MANAGEMENT

TUTORIAL

November 2012

Approved for Public Release; Distribution is Unlimited.

TREK-USER-038

 ii

TABLE OF CONTENTS

PARAGRAPH PAGE

1 What You Need to Know Before You Read This Document 1

2 Technical Support ... 1

3 Introduction ... 2

4 Writing Command Validation Software for TReK ... 3

4.1 First Steps: Setting Up Your Development Environment .. 3
4.2 Knowing When You Need to Validate a Command ... 3
4.3 Validating the Command and Sending Back the Results .. 4

4.3.1 Getting the Command from TReK .. 4
4.3.2 Sending Back the Results .. 5
4.3.3 A Short Code Sample .. 5

4.4 Putting It All Together .. 6

5 Command Management Tutorial with Validation .. 8

5.1 Setting Up the Command Node for User Provided Validation ... 8
5.2 Sending a Command from the Sub Node .. 9

Appendix A Command Validation Source Code Snippet ... 16

Appendix B Glossary .. 19

Appendix C Acronyms ... 26

TREK-USER-038

 iii

FIGURES

FIGURE PAGE

Figure 1 Advanced Management Dialog .. 8
Figure 2 Advanced Management Dialog with Validation Checking On .. 9
Figure 3 Command Processing Main Window with TRR Column ...10
Figure 4 Modify Command Dialog ...11
Figure 5 Modify Command Field Dialog ..12
Figure 6 Command Track (Validation Timeout) ...13
Figure 7 Realtime Commanding Messages (TRR Error 5) ...14
Figure 8 Command Track (Success!!!)..15

TREK-USER-038

 iv

CODE SAMPLES

CODE SAMPLE PAGE

Code Sample 1 The Validation Event Name .. 4
Code Sample 2 Validating the Command .. 6
Code Sample 3 Simple Code Outline ... 7

TREK-USER-038

 1

1 What You Need to Know Before You Read This Document

This tutorial is written with the following assumptions:

 You are familiar with the material in the TReK Getting Started User Guide (TREK-

USER-001), TReK Command Tutorial (TREK-USER-020) and the TReK Command

Management Tutorial (TREK-USER-021).

 You are an average C or C++ programmer and are familiar with your development

environment. A Visual C++ 6.0 project containing the source code described in this

document is available in the TReK installation directory. This tutorial will not cover

how to use the TReK Command Application Programming Interface with Visual

C++. If you would like to read a tutorial that covers this for the TReK Telemetry API

(it will be very similar for commanding), you can read one of the other tutorials that

are provided. A good example is the How to Build a Visual C++ Computation

Tutorial.

If you are uncomfortable with any of the items listed above, some of the terminology and

concepts presented in this tutorial may be difficult to understand.

2 Technical Support

If you are having trouble installing the TReK software or using any of the TReK software

applications, please try the following suggestions:

Read the appropriate material in the manual and/or on-line help.

Ensure that you are correctly following all instructions.

Checkout the TReK Web site at http://trek.msfc.nasa.gov/ for Frequently Asked

Questions.

If you are still unable to resolve your difficulty, please contact us for technical assistance:

TReK Help Desk E-Mail, Phone & Fax:

E-Mail: trek.help@nasa.gov

Telephone: 256-544-3521 (8:00 a.m. - 4:30 p.m. Central Time)

Fax: 256-544-9353

TReK Help Desk hours are 8:00 a.m. – 4:30 p.m. Central Time Monday through Friday.

If you call the TReK Help Desk and you get a recording please leave a message and

someone will return your call. E-mail is the preferred contact method for help. The e-

TREK-USER-038

 2

mail message is automatically forwarded to the TReK developers and helps cut the

response time.

3 Introduction

This tutorial will cover three functions provided by the TReK Command API that allow a

user to provide validation software in addition to validation performed by the TReK

Command Processing application when a TReK system is configured as a command

node. The first of these functions is GetValidationEventName.

GetValidationEventName returns a string that can be used to wait on a validation signal

that is sent by TReK when an uplink request needs validating. The

GetUplinkPacketForValidation function retrieves the uplink packet along with other

information for the validation software. Once the validation is finished, the

SendValidationResults function is used to let TReK know if validation succeeded or not.

After the details of these functions are discussed, you will be able to use the Command

Management Tutorial along with an addendum provided in this document to use the user

provided validation software describe in the tutorial.

TREK-USER-038

 3

4 Writing Command Validation Software for TReK

The Command Processing application in TReK provides some validation of commands

when a destination is configured to allow sub nodes to connect and send commands. For

example, the command node will check to ensure that the user is enabled and is allowed

to use the command mnemonic. However, it is possible that each payload team may have

additional validation requirements that are not implemented as part of the TReK

Command Processing application. By configuring the destination to have user provided

validation, a payload team can write additional software that provides payload specific

validation of commands. The software can be written with any development tool that

supports ANSI C. You can write a graphical program if you wish. However, the

example described in this document will be a simple console program to allow you to

easily see the interaction of the TReK Command API functions.

4.1 First Steps: Setting Up Your Development Environment

Before you can use the TReK Command API, you will need to copy a few files from the

TReK installation to your program or project folder. Alternatively, you can point to the

TReK files in their current location. You will need the TReK headers files trek.h,

trek_error.h, and trek_cmd_user_api.h located in the include directory under the TReK

installation folder. You will also need the trek_cmd_user_api.lib file from the library

directory in the TReK installation folder.

Once you have included these files in your development environment, you are ready to

start writing the command validation program.

4.2 Knowing When You Need to Validate a Command

If you have ever written a program with the TReK Telemetry API’s

GetPacketArrivalEventName function, then this part of the tutorial will look very

familiar. When you turn on the user provided validation, TReK will generate a windows

event to signal that a command needs to be validated. Your program will need to catch

the event, validate the command, and send back the results. If for some reason your

program does not catch the event (e.g., the program wasn’t running at the time), TReK

will stop waiting for the results after a timeout period and return that the command was

rejected. You will need to call the GetValidationEventName function and make the

appropriate calls to the Windows API to setup to wait on the event. The small code

segment that follows uses the WIN32 API function CreateEvent function to create or

open the event used for the signal. This will allow you to start the validation program

prior to activating the destination. It is important that you use the function parameters

shown for the CreateEvent function to ensure the function will work correctly with

TReK.

TREK-USER-038

 4

// Don't forget to include the trek_cmd_user_api.h file in this source
// file

// variables used in example code
int return_value;
char *event_name_ptr = NULL;
HANDLE validation_event_handle;

// Get the event name from TReK for a destination named “POIC”
return_value = GetValidationEventName(“POIC”, &event_name_ptr);

if(return_value != SUCCESS)
{

// Perform error checking and exit since the program will not get
// a signal.

}

// Create/Open the event
validation_event_handle = CreateEvent(NULL,

 FALSE,
 FALSE,
 event_name_ptr);

if(validation_event_handle == NULL)
{

// Perform error checking. Could not create event.
}

// The following code will clean up the memory and resources created
// above. It should be part of the exit code of your program (e.g., at
// the end of the main function block). Do not call the CloseHandle
// function until you no longer need to wait on the validation event or
// you will introduce a bug.

delete event_name_ptr;
CloseHandle(validation_event_handle);

// End of example code.

Code Sample 1 The Validation Event Name

4.3 Validating the Command and Sending Back the Results

The code in the previous section contains all of the preliminary work that is needed

before you can actually start validating commands. Now we can cover actually getting

the command that needs validation and sending the results of the validation back to TReK

so the command can be processed or rejected.

4.3.1 Getting the Command from TReK

To get the command from TReK to validate, you call the GetUplinkPacketForValidation

function. This function will return four items that you can use to determine whether or

not the command should be accepted and sent on to the destination, or rejected and all

processing of the command stopped. The information returned is:

 Username – The username associated with the TReK login from the sub node.

If Remote Services is configured to not require a login, then the username value

will be set to “no login”.

TREK-USER-038

 5

 Mnemonic – The mnemonic, or command name, being requested. TReK will

perform checks to ensure that the username associated with the mnemonic is

allowed before calling the user validation program. You will probably use these

two items to check the command data.

 Command – The command returned includes the header, command data, and

checksum. TReK will be resetting the timestamp in the header and

recalculating the checksum before forwarding this command to the destination

if it passes validation. Validation performed at this point could include

checking to see if the user is allowed to set certain values in this mnemonic.

 Command Length – The length of the command is returned in bytes. This

length includes the header, command data, and checksum.

Don’t forget that TReK creates memory that should be freed by the user program for the

username, mnemonic, and command. You can read the online version of the Command

API Reference Manual to see more details about the GetUplinkPacketForValidation

function.

4.3.2 Sending Back the Results

Once the user program has finished validating the command, the results can be sent back

to TReK via the SendValidationResults function in the TReK Command API. If the

validation was successful, TReK will continue to process the command by forwarding it

to the destination. In addition, a TReK Receipt Response (TRR) message will be

generated and sent to the sub node to inform it that the command was accepted and

forwarded by the command node. The sub node user can see this message in the

command track area of the Command Processing main window.

If the command does not pass validation, TReK will stop processing the command and

generate a TRR message that indicates that user provided validation failed. This will

appear as TRR error number 5 on the sub node. The error number you send to TReK in

the SendValidationResults function will be contained in the TRR data sent to the sub

node. While the command track will not show the detailed error number, a sub node user

could see the information in the Realtime Commanding Messages Viewer. It is

recommended that the user program for validation be written so that the error codes

returned via the SendValidationResults function are meaningful and can be used to

determine exactly why validation failed.

4.3.3 A Short Code Sample

Now that we have covered the GetUplinkPacketForValidation and SendValidationResults

functions, it is time to show a simple code example on how to use these functions.

TREK-USER-038

 6

// Don't forget to include the trek_cmd_user_api.h file in this source
// file

// variables used in example code
int return_value;
char *username_ptr = NULL;
char *mnemonic_ptr = NULL;
unsigned char *cmd_data_ptr = NULL;
unsigned int cmd_data_length;
unsigned short validation_results;

// Get the uplink packet for validation for the destination “POIC”
return_value = GetUplinkPacketForValidation(“POIC”,

 &username_ptr,
 &mnemonic_ptr,
 &cmd_data_ptr,
 &cmd_data_length);

if(return_value != SUCCESS)
{

// Perform error checking.
}

// Validate the command. This is just a simple check. This will be
// the section of code that is payload unique.

if(cmd_data_ptr[0] == 0x01) // checking the first byte in header
{

validation_results = 45; // payload unique error
}
else
{

validation_results = 1; // successful validation
}

// Once the command is validated, send the results back to TReK
return_value = SendValidationResults(“POIC”, validation_results);

// The following code will clean up the memory create by TReK in the
// GetUplinkPacketForValidation function.

delete username_ptr;
delete mnemonic_ptr;
delete cmd_data_ptr;

// End of example code.

Code Sample 2 Validating the Command

4.4 Putting It All Together

Now that you know about the three functions provided for user validation, we can go

over an example of using all the functions in a program. You will probably want your

command validation software to run continuously. Otherwise, you might miss a

validation signal and the command will get rejected since TReK does not receive results

back from your program. The code sample that follows is a simple outline that contains a

few lines of code along with comments. This code structure is the same as is used in the

Visual C++ 6.0 Project available in the TReK installation directory. The project can be

found in the following directory:

<TReK Install Path>\Examples\Visual C++\CommandValidation

TREK-USER-038

 7

The code sample is not meant to compile. You should consider it pseudo-code.

// Don't forget to include the trek_cmd_user_api.h file in this source
// file.

// Get the Validation Event Name for the destination (Code Sample 1).

// Validation loop that runs until an exit condition occurs
loop = TRUE;
while(loop)
{

// Wait on the event using the WIN32 API.
code = WaitForSingleObject(validation_event_handle, INFINITE);

if(code != WAIT_OBJECT_0)
{

// some error occurred, exit program.
loop = FALSE;

}
else
{

// Validate the command (Code Sample 2)

// Send the results to TReK (Code Sample 2)

// Clean up memory, ready for next command (Code Sample 2)
}

}

// Clean up any resources and exit (Code Sample 1)

// End of code outline.

Code Sample 3 Simple Code Outline

TREK-USER-038

 8

5 Command Management Tutorial with Validation

This section will use the example code that is delivered as part of the TReK examples

along with the Command Management Tutorial to show a simple example of the user

provided command validation. You will probably want to print out the Command

Management Tutorial and this section of the document. This section will contain some

changes that you will need to perform in the Command Management Tutorial in order to

set up TReK for user provided validation. The changes described here are:

 Replace step number 25 in section 5.2 of the Command Management Tutorial.

The changes are described in Section 5.1 of this tutorial.

 Replace section 5.5 of the Command Management Tutorial with Section 5.2 of

this tutorial.

5.1 Setting Up the Command Node for User Provided Validation

This section replaces step number 25 in section 5.2 of the Command Management

Tutorial.

Push the Advanced button. The Advanced Management dialog shown in Figure 1

will be displayed.

Figure 1 Advanced Management Dialog

The Advanced Management dialog is used to configure specific management

properties associated with this destination. These properties will be used for all sub

nodes (remote users) that connect to the destination. As you can see, you can set the

command functions that will be supported for remote users and configure user

provided validation checking. Turn on user provided validation checking and set the

timeout value to be 2000 milliseconds. Your dialog should now look like Figure 2.

TREK-USER-038

 9

 Figure 2 Advanced Management Dialog with Validation Checking On

Return to Step 26 in Section 5.2 of the Command Management Tutorial.

5.2 Sending a Command from the Sub Node

This section replaces Section 5.5 of the Command Management Tutorial.

Step-By-Step

1. If you haven’t moved over to your sub node computer it’s time to head that way.

Before we send the command there’s another feature in Command Processing that

is helpful if you’re a sub node. Go to the View menu and select Set Main

Window Command Track Preferences. In this dialog turn on the TReK

Receipt Response (TRR) column. Push OK to close the dialog. Your main

window should look similar to the one shown in Figure 3.

TREK-USER-038

 10

Figure 3 Command Processing Main Window with TRR Column

You should now see a new column called TRR in the command track area (it’s

the 4th column from the left). Since you’re already familiar with command

responses you can probably guess what this is all about. When you send a

command to a TReK destination it will respond with a TReK Receipt Response.

This will let you know that the TReK system (command node) received your

command request and whether it was accepted or rejected. As you might guess

you can use the View Realtime Commanding Messages dialog to see the

information in the TRR.

2. Now it is time to send a command from the sub node and have the command node

validate the contents of the command. Go to the Command menu and select

Commands. In the Commands dialog select the CAMERA_MODE command

and push the Modify button. We will need to set a value for the MODE field

before we can uplink the command. You should see the Modify Command dialog

as shown in Figure 4.

TREK-USER-038

 11

Figure 4 Modify Command Dialog

3. Select the MODE field in the list and push the Modify Field button. Change the

field value to 0x2D as shown in Figure 5. You should enter the value without the

“0x” prefix. TReK already knows that you are entering a hexadecimal value

based on the selected Field Value Representation.

TREK-USER-038

 12

Figure 5 Modify Command Field Dialog

Press the OK button to change the value and return to the Modify Command

dialog. Press the OK button on the Modify Command dialog to return to the

Commands dialog. You are now ready to send the command.

4. Now select the CAMERA_MODE command in the Commands dialog and push

the Uplink Local Command button. You should get a TRR error number 6 back

from the command node in a couple of seconds as shown in Figure 6. TRR error

number 6 indicates that a timeout error occurred while the command node was

validating the command. This happened since we never started the user provided

validation software. If you turn on user provided validation and your program

crashes unexpectedly, no one will be able to send a command until you are able to

restart your validation software.

TREK-USER-038

 13

Figure 6 Command Track (Validation Timeout)

5. Return to the command node to start the user provided validation software. Go to

the Windows Start menu of the Command Node. Select Programs, select TReK

(this name may be different if you selected a different name during installation),

select Examples, select Visual C++, and select Command Validation to start the

user provided validation software.

Appendix A contains the portion of the validation code that does the checking of

the command and returns the results to TReK. The validation software is set up to

reject the command CAMERA_MODE if it is sent by UserA and 46th byte of the

data has a value of 0x2D. UserB is allowed to set the value of the 46th byte only

to 0x33. All other users who have access to this command do not have

restrictions on the value for any portion of the command.

The source code for this program can be found in the CommandValidation.cpp

file located in the following folder:

<TReK Install Path>\Examples\Visual C++\CommandValidation

6. Return to the sub node and resend the CAMERA_MODE command. Select

CAMERA_MODE in the Commands dialog and press the Uplink Local

Command button. This time a TRR message with error 5 is returned. TRR error

5 indicates that the command node validation failed. We set the value for the

MODE field to 0x2D and the user provided validation software is set up to reject

the command if the 46th byte is 0x2D for UserA.

TREK-USER-038

 14

7. The error number set by the user provided validation software is returned as part

of the TRR message. You can see this value on the sub node by selecting the

TReK destination in the main window and bringing up the viewer window. Go to

the Destination menu and select View Realtime Commanding Messages.

Scroll up in the dialog to find the last TRR message. It should be the second to

last message in the viewer. Figure 7 shows the TRR message in the viewer

window. The value returned by the user validation (26) can be found a few lines

from the bottom of the dialog.

Figure 7 Realtime Commanding Messages (TRR Error 5)

TREK-USER-038

 15

8. Go back to the Commands dialog, select the CAMARA_MODE command and

push the Modify button. Change the value of the MODE field to 0x33. Don’t

forget that you shouldn’t enter the “0x” prefix. See steps 2 and 3 from above if

you don’t remember how to change a field value in a command.

9. From the Commands dialog, select the CAMERA_MODE command and push

the Uplink Local Command button. The command should be accepted by the

command node and forwarded to the destination. All of the responses received by

the command node for this command will be routed back to the sub node. The

main window on the sub node should now look like Figure 8.

Figure 8 Command Track (Success!!!)

TREK-USER-038

 16

Appendix A Command Validation Source Code Snippet

//

// Begin CommandValidation example code.

//

int return_value;

char *event_name_ptr = NULL;

HANDLE validation_event_handle;

BOOL loop = TRUE;

DWORD code;

char *username_ptr = NULL;

char *mnemonic_ptr = NULL;

unsigned char *cmd_data_ptr = NULL;

unsigned int cmd_data_length;

unsigned short validation_results;

// Get the event name from TReK for a destination named "POIC"

return_value = GetValidationEventName("POIC", &event_name_ptr);

if(return_value != SUCCESS)

{

 printf("Error getting validation event name. Exiting program.\n");

 return 1;

}

// Create/Open the event. It is important to set the first three

// parameters to the CreateEvent WIN32 API call as shown below.

validation_event_handle = CreateEvent(NULL,

 NULL,

 NULL,

 event_name_ptr);

if(validation_event_handle == NULL)

{

 printf("Error creating validation event. Exiting program.\n");

 return 1;

}

//

// Enter a loop for validation. The loop will only exit if an error

// is encountered.

//

while(loop)

{

 // Wait for the validation event to occur.

 code = WaitForSingleObject(validation_event_handle, INFINITE);

 if(code != WAIT_OBJECT_0)

 {

 printf("Error occurred while waiting for signal.\n");

 loop = FALSE;

 }

 else

TREK-USER-038

 17

 {

 // Get the uplink packet from TReK.

 return_value = GetUplinkPacketForValidation("POIC",

 &username_ptr,

 &mnemonic_ptr,

 &cmd_data_ptr,

 &cmd_data_length);

 if(return_value != SUCCESS)

 {

 printf("Error getting uplink packet for validation.");

 loop = FALSE;

 }

 else

 {

 //

 // Validate the Command.

 //

 validation_results = 1; // Success if no errors are found

 if(!stricmp(mnemonic_ptr, "CAMERA_MODE"))

 {

 if(cmd_data_length != 48)

 validation_results = 23; // command must be 48 bytes

 else

 {

 if(!strcmp(username_ptr, "UserA"))

 {

 if(cmd_data_ptr[45] == 0x2D)

 validation_results = 26; // UserA cannot use 0x26

 }

 else if(!strcmp(username_ptr, "UserB"))

 {

 if(cmd_data_ptr[45] == 0x33)

 validation_results = 27; // UserB cannot use 0x33

 }

 }

 }

 // Send the results back to TReK

 return_value = SendValidationResults("POIC",

 validation_results);

 if(return_value != SUCCESS)

 {

 printf("Error returning validation results to TReK.");

 loop = FALSE;

 }

 }

 }

}

//

// Clean up before exiting.

//

TREK-USER-038

 18

delete event_name_ptr;

CloseHandle(validation_event_handle);

TREK-USER-038

 19

Appendix B Glossary
Note: This Glossary is global to all TReK documentation. All entries listed may not be

referenced within this document.

Application Programming Interface

(API)

A set of functions used by an application program

to provide access to a system’s capabilities.

Application Process Identifier

(APID)

An 11-bit field in the CCSDS primary packet

header that identifies the source-destination pair

for ISS packets. The type bit in the primary header

tells you whether the APID is a payload or system

source-destination.

Calibration The transformation of a parameter to a desired

physical unit or text state code.

Communications Outage Recorder System that captures and stores payload science,

health and status, and ancillary data during TDRSS

zone of exclusion.

Consultative Committee for Space

Data Systems (CCSDS) format

Data formatted in accordance with

recommendations or standards of the CCSDS.

Consultative Committee for Space

Data Systems (CCSDS) packet

A source packet comprised of a 6-octet CCSDS

defined primary header followed by an optional

secondary header and source data, which together

may not exceed 65535 octets.

Conversion Transformation of downlinked spacecraft data

types to ground system platform data types.

Custom Data Packet A packet containing a subset of parameters that

can be selected by the user at the time of request.

Cyclic Display Update Mode A continuous update of parameters for a particular

display.

Decommutation (Decom) Extraction of a parameter from telemetry.

Discrete Values Telemetry values that have states (e.g., on or off).

TREK-USER-038

 20

Dump During periods when communications with the

spacecraft are unavailable, data is recorded

onboard and played back during the next period

when communications resume. This data, as it is

being recorded onboard, is encoded with an

onboard embedded time and is referred to as dump

data.

Enhanced HOSC System (EHS) Upgraded support capabilities of the HOSC

systems to provide multi-functional support for

multiple projects. It incorporates all systems

required to perform data acquisition and

distribution, telemetry processing, command

services, database services, mission support

services, and system monitor and control services.

Exception Monitoring A background process capable of continuously

monitoring selected parameters for Limit or

Expected State violations. Violation notification is

provided through a text message.

Expected State Sensing Process of detecting a text state code generator in

an off-nominal state.

EXPRESS An EXPRESS Rack is a standardized payload rack

system that transports, stores and supports

experiments aboard the International Space

Station. EXPRESS stands for EXpedite the

PRocessing of Experiments to the Space Station.

File transfer protocol (ftp) Protocol to deliver file-structured information from

one host to another.

Flight ancillary data A set of selected core system data and payload

health and status data collected by the USOS

Payload MDM, used by experimenters to interpret

payload experiment results.

TREK-USER-038

 21

Grayed out Refers to a menu item that has been made

insensitive, which is visually shown by making the

menu text gray rather than black. Items that are

grayed out are not currently available.

Greenwich Mean Time (GMT) The solar time for the meridian passing through

Greenwich, England. It is used as a basis for

calculating time throughout most of the world.

Ground ancillary data A set of selected core system data and payload

health and status data collected by the POIC,

which is used by experimenters to interpret

payload experiment results. Ground Ancillary

Data can also contain computed parameters

(pseudos).

Ground receipt time Time of packet origination. The time from the

IRIG-B time signal received.

Ground Support Equipment (GSE) GSE refers to equipment that is brought in by the

user (i.e. equipment that is not provided by the

POIC).

Ground Support Equipment Packet A CCSDS Packet that contains data extracted from

any of the data processed by the Supporting

Facility and the format of the packet is defined in

the Supporting Facility’s telemetry database.

Huntsville Operations Support

Center (HOSC)

A facility located at the Marshall Space Flight

Center (MSFC) that provides scientists and

engineers the tools necessary for monitoring,

commanding, and controlling various elements of

space vehicle, payload, and science experiments.

Support consists of real-time operations planning

and analysis, inter- and intra-center ground

operations coordination, facility and data system

resource planning and scheduling, data systems

monitor and control operations, and data flow

coordination.

TREK-USER-038

 22

IMAQ ASCII A packet type that was added to TReK to support a

very specific application related to NASA’s Return

to Flight activities. It is not applicable to ISS. It is

used to interface with an infrared camera that

communicates via ASCII data.

Limit Sensing Process of detecting caution and warning

conditions for a parameter with a numerical value.

Line Outage Recorder Playback A capability provided by White Sands Complex

(WSC) to play back tapes generated at WSC

during ground system communication outages.

Measurement Stimulus Identifier

(MSID)

Equivalent to a parameter.

Monitoring A parameter value is checked for sensing

violations. A message is generated if the value is

out of limits or out of an expected state.

Parameter TReK uses the generic term parameter to mean any

piece of data within a packet. Sometimes called a

measurement or MSID in POIC terminology.

Payload Data Library (PDL) An application that provides the interface for the

user to specify which capabilities and requirements

are needed to command and control his payload.

Payload Data Services Systems

(PDSS)

The data distribution system for ISS. Able to route

data based upon user to any of a number of

destinations.

Payload Health and Status Data Information originating at a payload that reveals

the payload’s operational condition, resource

usage, and its safety/anomaly conditions that could

result in damage to the payload, its environment or

the crew.

Payload Operations Integration

Center (POIC)

Manages the execution of on-orbit ISS payloads

and payload support systems in

coordination/unison with distributed International

Partner Payload Control Centers, Telescience

Support Centers (TSC’s) and payload-unique

remote facilities.

TREK-USER-038

 23

Payload Rack Checkout Unit

(PRCU)

The Payload Rack Checkout Unit is used to verify

payload to International Space Station interfaces

for U.S. Payloads.

Playback Data retrieved from some recording medium and

transmitted to one or more users.

Pseudo Telemetry (pseudo data) Values that are created from calculations instead of

directly transported telemetry data. This pseudo

data can be created from computations or scripts

and can be displayed on the local PC.

Remotely Generated Command A command sent by a remote user whose content

is in a raw bit pattern format. The commands

differ from predefined or modifiable commands in

that the content is not stored in the POIC Project

Command Database (PCDB).

Science data Sensor or computational data generated by

payloads for the purpose of conducting scientific

experiments.

Subset A collection of parameters from the total

parameter set that is bounded as an integer number

of octets but does not constitute the packet itself.

A mini-packet.

Super sampled A parameter is super sampled if it occurs more

than once in a packet.

Swap Type A flag in the Parameter Table of the TReK

database that indicates if the specified datatype is

byte swapped (B), word swapped (W), byte and

word swapped (X), byte reversal (R), word

reversal (V) or has no swapping (N).

Switching A parameter’s value can be used to switch between

different calibration and sensing sets. There are

two types of switching on TReK: range and state

code.

TREK-USER-038

 24

Transmission Control Protocol

(TCP)

TCP is a connection-oriented protocol that

guarantees delivery of data.

Transmission Control Protocol

(TCP) Client

A TCP Client initiates the TCP connection to

connect to the other party.

Transmission Control Protocol

(TCP) Server

A TCP Server waits for (and accepts connections

from) the other party.

Telemetry Transmission of data collected form a source in

space to a ground support facility. Telemetry is

downlink only.

Telescience Support Center (TSC) A TSC is a NASA funded facility that provides the

capability to plan and operate on-orbit facility

class payloads and experiments, other payloads

and experiments, and instruments.

User Application Any end-user developed software program that

uses the TReK Application Programming Interface

software. Used synonymously with User Product.

User Data Summary Message

(UDSM)

Packet type sent by PDSS that contains

information on the number of packets sent during a

given time frame for a PDSS Payload packet. For

details on UDSM packets, see the POIC to Generic

User IDD (SSP-50305).

Uplink format The bit pattern of the command or file uplinked.

User Datagram Protocol (UDP) UDP is a connection-less oriented protocol that

does not guarantee delivery of data. In the TCP/IP

protocol suite, the UDP provides the primary

mechanism that application programs use to send

datagrams to other application programs. In

addition to the data sent, each UDP message

contains both a destination port number and a fully

qualified source and destination addresses making

it possible for the UDP software on the destination

to deliver the message to the correct recipient

process and for the recipient process to send a

reply.

TREK-USER-038

 25

User Product Any end-user developed software program that

uses the TReK Application Programming Interface

software. Used synonymously with User

Application.

Web Term used to indicate access via HTTP protocol;

also referred to as the World Wide Web (WWW).

TREK-USER-038

 26

Appendix C Acronyms
Note: This acronym list is global to all TReK documentation. Some acronyms listed

may not be referenced within this document.

AOS Acquisition of Signal

API Application Programming Interface

APID Application Process Identifier

ASCII American Standard Code for Information Interchange

CAR Command Acceptance Response

CAR1 First Command Acceptance Response

CAR2 Second Command Acceptance Response

CCSDS Consultative Committee for Space Data Systems

CDB Command Database

CDP Custom Data Packet

COR Communication Outage Recorder

COTS Commercial-off-the-shelf

CRR Command Reaction Response

DSM Data Storage Manager

EHS Enhanced Huntsville Operations Support Center (HOSC)

ERIS EHS Remote Interface System

ERR EHS Receipt Response

EXPRESS Expediting the Process of Experiments to the Space Station

ES Expected State

FAQ Frequently Asked Question

FDP Functionally Distributed Processor

FSV Flight System Verifier

FSV1 First Flight System Verifier

FSV2 Second Flight System Verifier

FPD Flight Projects Directorate

FTP File Transfer Protocol

GMT Greenwich Mean Time

GRT Ground Receipt Time

GSE Ground Support Equipment

HOSC Huntsville Operations Support Center

ICD Interface Control Document

IMAQ ASCII Image Acquisition ASCII

IP Internet Protocol

ISS International Space Station

LDP Logical Data Path

LES Limit/Expected State

LOR Line Outage Recorder

LOS Loss of Signal

MCC-H Mission Control Center – Houston

MOP Mission, Operational Support Mode, and Project

MSFC Marshall Space Flight Center

MSID Measurement Stimulus Identifier

TREK-USER-038

 27

NASA National Aeronautics and Space Administration

OCDB Operational Command Database

OS Operating System

PC Personal Computer, also Polynomial Coefficient

PCDB POIC Project Command Database

PDL Payload Data Library

PDSS Payload Data Services System

PGUIDD POIC to Generic User Interface Definition Document

POIC Payload Operations Integration Center

PP Point Pair

PRCU Payload Rack Checkout Unit

PSIV Payload Software Integration and Verification

RPSM Retrieval Processing Summary Message

SC State Code

SCS Suitcase Simulator

SSP Space Station Program

SSCC Space Station Control Center

SSPF Space Station Processing Facility

TCP Transmission Control Protocol

TReK Telescience Resource Kit

TRR TReK Receipt Response

TSC Telescience Support Center

UDP User Datagram Protocol

UDSM User Data Summary Message

URL Uniform Resource Locator

USOS United States On-Orbit Segment

VCDU Virtual Channel Data Unit

VCR Video Cassette Recorder

VPN Virtual Private Network

